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Analysis of Mode Coupling on Guided-Wave
Structures Using Morse Critical Points

Alexander B. YakovlevMember, IEEE,and George W. Hansomember, |IEEE

Abstract— New insight on mode coupling in waveguiding a generalized reciprocity theorem as well [11]. The coupling
structures is obtained from the theory of Morse criical coefficients are obtained in terms of the overlap integrals
points (MCP’s). It is shown that the traditional coupled-mode  -,nnacting eigenmode fields and currents of individual con-
formalism has a clear analytical connection with functional d Full bati h has b lied for th
properties of the characteristic determinant in the vicinity of uctors. Fu 'WaYe pertur at'on.t eor){ as eel_’l aPp '? or the
the Morse critical point, which determines the minimum of accurate analysis of coupled microstrip transmission lines [12]
coupling. The relationship between perturbed and independent and resonant structures [13]. The numerical results agree well

modes in the mode-coupling region is obtained using the Taylor wjth those obtained by a Galerkin’s moment-method solution
polynomial of order two about the Morse critical point, and it is and with experimental data

found that the coupling factor is proportionally related to the . . . L
value of a characteristic function at this point. The qualitative A different view on mode coupling is based on the principles

modal behavior in the mode-interaction region is predicted by Of catastrophe theory [14]-[16]. Analysis of the eigenmode
a simple normal form, which can be geometrically interpreted mutual coupling using the concept of Morse critical points
2,5t o e rccin o 5 sl sece 1 & pane (CP') o catastophe hery has been orgnaly -
resultsID for g variety of guided-wavepstrguctures, including duced for open resonators anq open WaveQUIde§ [17],' It has
printed-circuit transmission lines, planar-slab waveguides, and Peen observed that two solutions form a coupling diagram
shielded microstrip-like lines demonstrate the efficiency of the in the vicinity of the MCP found in the mode-coupling
proposed approach for the rapid identification of mode-coupling region. An effect of resonant and intertype oscillations in open
regions, and for reconstruction of dispersion behavior in those yo- and three-dimensional resonators has been investigated
regions via simple analytic (normal) forms. using the rigorous spectral theory of open structures [18]
Index Terms—Coupling, coupled-mode analysis, critical points, in conjunction with the concept of MCP’s [19]. This idea
electromagnetic coupling, transmission lines, waveguides. has been also applied for the analysis of the eigenmode and
induced-mode coupling in open waveguide resonators [20].
] ) o Coupling effects of complex waves have been considered in
M ORE than 40 years ago Pierce, investigating the copyytilayer cylindrical strip and slot lines [21]. It was found that
pling of modes in microwave traveling-wave tubes [llisolated MCP’s and degeneration points have clear physical
formulated the relationship between modes before and aft@fnection with observed dispersion behavior. Some results on
coupling, and introduced the concept of a coupling fact@fee oscillations and intertype waves in diffraction gratings and
between waveguide modes. Later on, a great number of PaRggsr explanation by means of the analysis of singular points
appeared in the scientific literature showing development gf\e peen collected in [18]. A “nonphysical” complex regime
the coupled-mode theory and applications for microwave agfl speciral curves has been found, which will be explained

optical waveguides [2]-[4] and devices, including directionghyer in this paper, based on the analysis of the normal form

couplers [5], periodic structures [6], nonparallel waveguidinggfined by the MCP.

structures [7], grating couplers [8], etc. _ In this paper, the connection with the traditional coupled-
Various mathematical approaches have been applied fange formalism is demonstrated in terms of structural char-

the analysis of coupled waveguiding structures. A genergligristics in the vicinity of MCP's. It is shown that simple

review of coupled-mode theory is provided in [9], as well,\tical expressions for perturbed and independent modes

as providing some examples of coupling in resonator afdyhe mode-coupling regions can be obtained from the Taylor

waveguiding systems via a variational principle. The appg%ljynomial of order two about the MCP. Qualitative behavior
spectral curves in the region of interest is predicted by

I. INTRODUCTION

cation of a generalized reciprocity theorem has been propo

for mode-coupling study in parallel dielectric waveguiding,s anaivtically constructed normal form. A geometrical in-
structures [10]. It is shown that results obtained by the use o &pretation of the normal form is given as a result of the

geng;al|zt¢d lrezlprocml/ rdelatlodn atr;]d by "’; varlat;glnal prgc'plfﬁtersection of a saddle surface and a plane corresponding
are identical. A coupled-mode heory for muitiayerea: a the minimum of coupling. A clear explanation of the

multiconductor transmission lines has been developed us'(ﬁ]igpersion curves' hyperbolic behavior, and conditions for
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guided-wave structures are investigated to show the generalityfo obtain a general relationship between the concept of
of the obtained results. MCP’s and the traditional coupled-mode formalism, we use
the result of the Morse lemma [14], [16], which proves that
II. THEORY the function H in the local neighborhood of the MCP can
. . N : . be exactly represented by a quadratic canonical form using
Consider a mathematical model ofalong|tud|nallymvanarﬁ smooth change of coordinates. Therefore, it is enough to

guided-wave structure resulting in a homogeneous mat%nsider the Taylor polynomial of order two about the MCP
system for natural modes of the structure

v = v LH" (k= fm)?
Ak, HX =0 (1) Hr, f) = Htim, fn) + é Hy,o( m)

+ :f(’i_lim)(f_fm)'i_%H}/f(f_fm)Q (3)

Wipere all partial derivatives are calculated(at,,, f,,) and

H, = HY, . Local structures = r(f) can be easily obtained

rom the quadratic form (3), shown in (4), at the bottom of

where A(x, f) is an operator-functions and f represent
the unknown guided-wave normalized propagation const
ky/ko and frequency, respectively, and would typically
represent a vector of unknown current density or electric:
field intensity, depending on a particular problem formulatioﬁh'S page. . .
Imposing the necessary conditidet[A(x, f)] = 0 leads to The expression (4) represents the local behavior of the

the determination of the propagation constant spectrum, Whgwlr))agétlon consrt]an;rsilyf N Kt:i?(f)h In ths V|C|n|t3|/_ of the_
can include regular and singular (critical) points associat (m, fm), which is located in the mode-coupling region

with certain modal behavior [22]. Functional characteristiﬁjza p;]erturhbed vyave?uidir:jg Isgucture. It has been (ﬂscussed
in the local neighborhood of a regular point can be analyz ] that the point of modal degenerady(rm, fm) = 0

using the implicit function theorem [14], where a unique cur 5 related to a doub!e-pomt _blfurcatl_on, a_nd the solutlon_ s
% = r(f) or f = f(x) through a regular point can be Obt‘,jlinedr_epresented as two intersecting straight lines. The condition

To investigate the structural behavior at singular points, t é”"“. i:m% = 0can b.e associated With unpt()a rturbed modes
smooth analytical functiod (x, f) = det[A(x, f)] has been ] with the propagation constants, » given by
considered in the complex domair, f). fir,2 = tim + S1,2(f — fm) (5)
It has been shown, for the explicit example of a conductor- ) ) ) _
backed coplanar strip line [22], that the MCP generally defind€reS1, » represent slopes of intersecting straight lines

by the following set of equations: g H' N2 R
G, = _lins wf\ _ 25 6
Hy (5, Pl tsrn. ) = H (5 Dl 1) = 0 Yy, \/<H) Hy, ©
_ 1 1 1" 1
¢ =He Hyp — HepHyl o 5y 700 (2) It can be observed that the definition of codirectional
exists in the mode-coupling region when two characteristierward (backward) and contradirectional waves is connected
curves approach each other and bend before crossing. i functional characteristics in the vicinity of t.he MCP
universal mode-coupling behavior observed in a variety §KPressed in terms &, » defined by (6) as follows:
guided-wave structures is related to the case when the Hesgigfdlirectional Forward Waves:
determinant is negative. The structural behavior Hf(x, f) H/, HY,
in the vicinity of the MCP(k., f.) can be analyzed using S12>0= 7 <0 —=>0 (7)
a Taylor series expansion, and the qualitative and quantitatkf%directional Backward Wa\'jgs "
local structure reconstructed. In the case when the Hessian H" ' H"
ff

determinant¢ is positive, the MCP defines local minima S1,2< 0= H’f/f >0 T >0 (8)
and maxima [14], [15]. This case is not of interest in this . KK KK
research and will not be considered here. Note that for tfe@ntradirectional Waves: ,
rest of this paper, the functional characteristics in the lo- {Sl > 0} — Hyy >0 Hyy <0. 9)
cal neighborhood of the MCRH (s, fin), H, (Km, fm), 52 <0 HY, HY,

HE (R fo)s B (Fmy fm)s HY, (fm; [m)) are obtained as  coordinates of the MCRis, f,n) can be expressed in

real-valued quantities. This will be the case when the MCRyms of unperturbed modes’ propagation constants de-
(km, fm) is real valued, which occurs for lossless media evgarmined by (5) and (6) ’

in the event of complex modes. The MCP formalism, i.e.,

(2), (4), etc., is equally valid at complex poing,., fm), o = (R1 + F2) + H,’;f(f_ Fn)
which occur for lossy media, although, in this case, the " 2 Hy, "
connection with traditional coupled-mode theory is not as fo=f— (f1 — Ra) HI. (10)
straightforward. Therefore, in the following, lossless structures me 2 \/(( H" )2 — H/ _H",) )
will be considered. ~f weegs
Y, JHL? = HLHE(S — fn)? = 2H H i, fi)
K1,2 = Hm (f - fm) + (4)

T gn 17
Hﬁﬁ Hﬁﬁ
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Substitution of(x,,, f..) given by (10) into (4) leads to the which is consistent with the above expression (13) for the

relationship betweemr; » and &y 2 mode-coupling factor of codirectional waves. The result (14)
for contradirectional coupling can be obtained from (11)

(F1 + Fo2) Fr—fa\” H(km, fm) considering imaginary parts of the propagation constants in

FL2 = 2 + \/< 2 ) -2 H. ’ the complex mode regime. It should be noted that the Morse

(11) frequency f,, is an important parameter for evaluating the
minimum of the mode-coupling factor.
In contrast to (11), the following result has been obtained Using a similar procedure, the following relationship be-
for mode coupling in microwave traveling-wave tubes [1]: tween#; » andx; » can be obtained:

(I%l + 1%2) I%l — I;',Q 2 K 2 2
K12 = + + - (12) - _ (1‘51 + 1‘52) Rl — K2 H("Ema fm)
2 2 Iﬁ/o K/l,? — 9 + 2 + 2 H//

which expresses the result of coupling of independent (unper- (15)

turbed) modes; and#., and K /k represents the normalized

coupling factor between modés and#. Signs “t” at K/ky  and compared with the result given in [23, egs. (7) and (8)].

term are related to modes with codirectional and contradirec-In this section of the paper, the connection between the

tional power flow, respectively. concept of MCP’s and the coupled-mode theory is shown via
Comparison of (11) and (12) makes it possible to comimple analytical relations (11)—(15). It is observed that the

clude that the mode-coupling factdf/k, is connected with Morse frequencyf,,, determines the minimum of coupling and

functional characteristics at the MGR,,,, f.) can be effectively used for the identification of mode-coupling
2 regions.
i(?) = -2 M Before proceeding to examine the specific cases of co- and
0 HY contradirectional coupling, it is worthwhile to illustrate the

which leads to the expression df/k, for codirectional ideas presented above from a slightly different perspective.
coupling Rather than defining the Morse point as in (2), and considering

the degenerate conditio = 0 (double-point bifurcation)

H(km, fm) as a special case at which point unperturbed modes exist

K
ko =y 2 H!. (13) (which was done in the proceeding), assume initially that the
o ) structure in question exhibits sufficient symmetry such that
and contradirectional coupling two classes of modes (e.g., even and odd) of propagation will

K Him exist independently of each other. L&k(x, /) = 0 be the
2 _ QM_ (14) dispersion equation which implicitly determinegf). The
ko HY, conditions [24]

It should be noted that the case WhBitrs,,,, f)/H.,. <0 , ,
is related to codirectional power rovS and rr)1éde couplingH('im’ Fm) = Hi (s )l s, 1y = Bt Dl e, ) =0
between two forward (backward) traveling waves. Occurrence §=[Hi HY p — H HY (s, f) 0 (16)
of complex modes in the mode-coupling region between a
forward wave and a backward wave is connected with tf@€e necessary and sufficient féf to be locally equivalent
case WhenH (., fm)/H". > 0. The results (13) and (14) around(t,, fm) to the normal form
represent the connection between coupled mode theory and
the concept of MCP’s from catastrophe theory. V(R +6f%) a7

It has also been shown [23] th&tx = x; — k2 has the
minimum value of the mode-coupling factor 2f/k, at the Wwherey = sgn(H, ), § = sgn({), andsgn(z) denotes the
frequency which corresponds to a degeneracy of independe@in of z, x # 0. As before, we are interested in the case
modess; and#,, leading tor; = #». The same result can bewhené < 0, such that (17) describes two intersecting straight
obtained considering; » and#; » at f = f,,. Expression (5) lines. This is the situation when the dispersion curves of two

explicitly shows that at frequencf},, the independent modesuncoupled modes intersect, leading to a modal degeneracy.
k1 o are degenerated antl = fs = k,,. Using this result, Now assume a small perturbation exists which breaks the

the relationship (11) is reduced to original structural symmetry, resulting in coupling of the
previously uncoupled modes. The dispersion equation may be
H(km, fm written as
I‘ELQII‘Enl:l: —2%
H(k, f) +ep(s, f,e) =0 (18)
As a result,

Hrm: for) where ¢ is some small parameter and is a perturbation

Ak =1 — Ky =2y [ =2 % function. It can be shown [24] that a functiG¥(«, f, «) exists

s such that: 1)G(x, f, 0) = H(x, f) and 2) for any small
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perturbationp there is ana such thatH + ep is equivalent it can be shown using the representation (20) that slopes of
to G(k, f, @) (i.e., up to equivalence(7 contains all small «; » at f,, have the same sign
perturbations ofH). Such a function is called a universal

1
unfolding of H, and for the degenerate Morse point defined M - _H"”vf.
by (16) the universal unfolding is daf F=fm HY,

It can be observed that the function
G(’iv 1 a) = ’V(KQ + 6f2 + a) (19) o’
— _ RS _
In general, a universal unfolding(x, f, ai, ---, ay) of w) = tom H! (f = fm)
H(x, f) requiresk additional parameters, -- -, au, where

represents the equation of the straight line with the slope

k is called the codimension df. It is shown in [24] that the —H,Q’f/H,’.{n- The linear coordinate transformation

codimension ofH satisfying (16) is unity and, thus, exactly
one additional parameter is needed to locally describe the H;’f .
effect of all possible small perturbations on H. This is <“+ g (f = fm)s f) = (%, f)
significant, since any such small perturbation (due to geometry, "m

material inhomogeneity, etc.) is guaranteed to result in tHads to the form shown in (20a), at the bottom of this page,
behavior described by (19), which represents the characteMélich represents two branches of a hyperbola defined by the
tic hyperbolic form encountered in mode-coupling problem§anonical form (normal form)
Therefore, in this latter representation, behavior about the ((H;/f)Q ~ H/, HY,)

nc_mdegenerate Morse poin_t (Wiﬂﬁ(n,,_l, fm) # 0) ass_ociated (Re{f — km})? — CTRE (f = fm)?

with mode coupling (detailed previously) is obtained as a Kk

universal unfolding associated with the degenerate Morse point =_9 M (21)
(With H(Kp,, fm) = 0) for the initial symmetrical structure. HY,

The universal unfolding (19) predicts the same qualitative The result (21) shows the qualitative and quantitative behav-
form as the Taylor series (3). The definition of (2) togethgg, of dispersion curves in the mode-coupling region, which
with the Morse lemma or (16) together with the concept geometrically approximated by two hyperbola branches
of universal unfoldings lead to the same answer, althougRptiered affim, fm), as will be demonstrated later. It should
one method may be better suited for certain analyses that noted that the function given in the left side of (21)
the other. For instance, the view of a perturbed symmetriq@lpresems the equation of a saddle surface in the three-
structure together with a universal unfolding makes it clegimensional spacés, f, H). The expression in the right side
that, in a practical sense, the hyperbolic form (19) alwaygrresponds to the equation of a plane related to the minimum
occurs on physically realizable structures since any imperfeg- ihe coupling factor. As a result, the normal form (21)
tion (perturbation), however small, due to structural/materig geometrically represented as the intersection of a saddle
asymmetry inherent in a manufacturing process, will result &),rface and a plane, which results in hyperbolic behavior of

mode coupling. local structure associated with mode coupling.

A. Mode Coupling Between Codirectional Waves B. Mode Coupling Between Contradirectional Waves

Mode coupling of codirectional waves is related to the case Mode coupling between forward and backward traveling
whenH (k,,, fm)/H,, < 0 as well as slope requirements (7)vaves is related to the case Whéf{x,,,, f..)/H",. > 0 and
and (8) for forward (backward) waves expressed in terms glbpe requirements for contradirectional waves (9). The local
functional characteristics evaluated in the vicinity of the MCRstructure (4) generated in the vicinity of the MCP represents
Local structure (4) in the case of mode coupling betweeBal and complex solutions. If the following condition is
codirectional waves is represented as a pure real valuggisfied in (4):
function (), shown in (20), at the bottom of this page.

According to the definition of codirectional waves (H;)? — HYL HY)(f = fm)? — 2H] H(tip, frm) <0
(k1,2dr1 2/df > 0 (<0) for forward (backward) waves), (22)

Hgf \/((I—I'/;f)2 N H'/"/”H}/f)(f o fm,)2 - 2Hf/€/nH(Iim,7 fm,)
Re{ﬁl’Q} =Fm = H (f - frn) + g
IIH{KJLQ} =0 (20)

\/((H;/-@/f)Q - H;/»e/nH}/f)(f = fm)? = 2H] H(Km; fm)
Hy,

R.e{l%172} = Km + (20&)
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then local structure for the propagation constant of complevhich represents the relationship for the coupling factor of
modes in the mode-coupling region is represented by a straighhtradirectional waves similar to (14).

line with the slope—H/,/H,, Expression (26) can be transformed to the canonical form
I of the ellipse equation centered At= f,,, which represents
Re{r(f)} = fim — S (f = ) (23) the normal form of the attenuation constant behavior in the
" HL " vicinity of the MCP
The complex mode condition (22) allows determination of (Im{x})?  (f — fm)?
the frequency range of complex modes in terms of the Morse 2 b2 =1 (28)
frequency and functional characteristics in the vicinity of the
MCP with
H("Ema fm) 2 2H] H("Ema fm)
QHQKH(Hm, frn) CL2 =2——"= b= = .

f S <frn - \/(H//f)2 — g7 H}/f ) HI/'CIK (Hf/»@/f)Q - HI/'CIKH}/f

[24], have been associated with the transition from a pair
of real improper—improper solutions to a pair of complex
conjugate (leaky mode) solutions [22]. If the complex mode

P \/ (2H;;,€H(ram, fm)

Other types of critical points, called fold or turning points
HY, Y — Hi HY, ) @y

and occurs in the mode-coupling region (ca&éx,,,, fn.)/HL, >
Af =9 2H!" H(Km, fm) 0), the coordinates of a fold poift ¢, f;) can be expressed in
f= ( H,Zf)2 —H"_ H}’f : terms of functional characteristics about the MGR,, f,.).

N _ o The obtained formulas (25) for the propagation constants
If the complex mode condition (22) is not satisfied, the local, , at boundary frequencies in condition (24) represent the

structure (4) generates two real-valued branches of a hyperbghmroximation of the coordinates of the propagation constant
in opposite quadrants in comparison with the case of moge the fold points

coupling of codirectional waves. The following frequency

ranges correspond to hyperbolic behavior of propagation con- . ~ K H;:f 2H], H(Km; fm) (29)
stants: J12 % ¥ g (H!,)? - H! HY,
< fon— 2H] H (K, fm) The frequency coordinates of the fold points can be approxi-
(H);)* — H! HY, mated by the boundary frequencies in the condition (24)
and 2H], H(fm, fm)
ff1,2%fm:l:\/(H;/f)Q_H’ZKH}/f' (30)

P \/ 2H! H (K, fm)
m (

H )2 — H" H" . . . . .
wf wrEff As a result, determination of the MCP’s coordinates gives
To find the values of the propagation constasgs, which complete information about complex modes appearing in the

correspond to the boundary frequencies of the complex-md@@de-coupling region. The frequency range of complex mode
regime in the mode-coupling region, we combine (23) and (24§9iMes and coordinates of fold points are determined in terms

and obtain the following values fo; o: of the MCP's characteristics.
Ko = r T Hy | 2H! H(Kp, fm) (25) [1l. NUMERICAL RESULTS AND DISCUSSION
1,2 — vm .
Hix (H;’f)Q - Hf/ﬁ/nH}/f To illustrate the concepts detailed above, examples of mode

coupling on several different guided-wave structures will be

from local form (4) satisfying the frequency-range conditioﬁons'dered in the following. In each case, a rigorous full-wave

(24), shown in (26), at the bottom of this page. The maximuﬁ?lunon has_ been _obtame_zd. _In the f!rSt. exgmple, a full-
values of the attenuation constanwill be reached af = f, wave analysis of printed-circuit transmission lines has been
™ performed using an electric-field integral-equation technique

The attenuation constant = Im{x; >} can be expressed

. H(Km» fm) similar to [22] and [25]. A coupled set of homogeneous
Im{r7'5"} = &4 /2 —Hr integral equations has been obtained, enforcing the boundary

" condition for the tangential components of the electric field

and on the surface of conducting strips. As another example, dis-
oK . H(stm, fo) persion pehavipr of g.uidedl su_rface—wave modes on gr_ounded

T =Im{Ar™**} =2 2T (27) slabs with anisotropic chirality has been studied via the

volume equivalence theorem for bianisotropic media [26].

V2HEH (5 ) = (HLp)? — HE T~ fon)?
H},

gIm{ry 2} = £ (26)
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1.5% full-wave
1455 ¢ local structure .
1.51 ¥ MCP
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= |
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Fig. 1. Degeneracy of dominafEH, even and odd proper modes in aFig- 3. Full-wave results and local structure for dominant modes of
symmetrical conductor-backed coplanar strip line with infinite superstraf@nsymmetrical conductor-backed coplanar strips with infinite superstrate:
The degenerate MCP is obtained at the point of intersection of even and ddd1 = 0.25, k1 =1 cm, hy = 0.1h1, &, = 2.25, €5 /&, = 1.15.

dispersion curveswy /hy = wa/h1 = 0.25, d/hy = 0.25, hy = 1 cm,

hy = 0.1k, & = 2.25, €5/er = 1.15. degeneracy of the dominant modes occurs at the frequency
4.6133 GHz, meaning that the mode-coupling factor at this
1.455 , , . , , point is equal to zero. The degenerate MGP £, f) =0
as well as conditions in (2)] with coordinatés,,,, fn) =
1450 | (1.4403, 4.6133) is found at the point of the intersection of
> even and odd dispersion curves. The local structure generated
§1-445 - in the vicinity of the MCP is represented by two intersected
= straight lines and agrees well with the full-wave solution.
g 1440 | Equalization of even- and odd-mode velocities at the degener-
Lazs | | acy point can be observed by varying a spectral or structural
: W,y =y [h, =0.25 parameter of the symmetrical structdee;, = w,). Changes in
1430 | Zmode wilh,=0.25; w, /h,=0.27 | width strip of one conductofuw; # w-) perturb the symmetry
of the structure, leading to the transformation of odd and
1.425 . . . . . even modes inte- andw-modes, and form the mode-coupling
35 40 45 50 55 60 65 region of codirectional waves shown in Fig. 2. It is observed

Frequency (GHz) (see Fig. 2) that small changes in width stip/h, from 0.25
Fig. 2. Dispersion behavior for dominant modes of symmetrical and nof? 0.27 result in the formation of hyperbolic behavior of the
_symme_trica\_l conductor-backed coplanar strips with infinite superstrate (sgspersion curves af andw-modes. It should be noted that the
ine) and 1s_broken by the. perturbation of symmety due 10 unequal sify Pearance of- and r-modes in nonsymmetrical structures
widths (solid line):d/hy = 0.25, hy = 1 cm, hy = 0.1hy, ¢, = 2.25, IS the result of coupling between odd and even modes of a
es/er = 1.15. symmetrical transmission line, arfid/k, is a coupling factor
between odd and even modes. The nondegenerate MCP with
The third structure is a shielded microstrip-like transmissiatoordinates(x,,, f..) = (1.4403, 4.6375) is obtained in the
line investigated using the method of integral equations forode-coupling region, but is not shown in Fig. 2.
overlapping regions [27]. This method leads to a coupledA decrease in strip widthw,/h; from 0.25 to 0.23
system of an electric-field Fredholm-type integral equation efso leads to coupling of codirectional dominant modes
the second kind with a compact kernel. (H(km, fm)/H!. <0).Fig. 3 demonstrates full-wave results
The above three examples demonstrate codirectional caud local structure for nonsymmetrical conductor-backed
pling on three different physical structures. In the last examplegplanar strips with infinite superstrate. Local structure (20)
contradirectional coupling is examined for improper modes d& generated in the vicinity of the MCP having coordinates
a printed transmission line exhibiting a complex-mode regine..., f,.) = (1.4406, 4.6247), as shown in Fig. 3. Very good
between the range of real solutions. In all cases examined hegreement with full-wave dispersion characteristics behavior
a Galerkin’s moment-method solution is applied to convert the observed in the mode-coupling region. The minimum of
system of integral equations into a matrix system (1). the coupling factor af = f,,,, defined by (13), is obtained in
Full-wave results for odd and even dominant proper forwatdrms of functional characteristics about the MCP and equals
modes in symmetrical conductor-backed coplanar strip lif.e000 729.
with infinite superstrate are demonstrated in Fig. 1. The ratioMinimum coupling facto —2H (k,,, fm)/H".)'/? behav-
of dielectric permittivities of superstrate and substrafée, ior versus strip widthw,/hy is presented in Fig. 4 for the
is chosen about a critical value for which the propagaticabove discussed example. Changes in the coupling factor value
constant of the odd-mode approaches 1d, surface-wave are related to the migration of the MCP. A sharp minimum
mode, but does not become leaky. It is observed thatcarresponding to zero coupling is obtained at the degeneracy
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Fig. 4. Minimum coupling factor behavior versusz/hi for nonsym- . . . L
metrical conductor-backed coplanar strip line with infinite superstratEid- 6. Dispersion characteristics and local structure Horodd—H - -even

wi/hy = 0.25, d/hy = 0.25, hy = 1 cm, hy = 0.1hy, € = 2.25, higher order modes in semiburied microstrip ling; = 0.1 mm,
E.q/E]‘ = 1.15. ho = 1.2701 mm.
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Fig. 5. Dispersion characteristics and local structure ol and HE3  Fig. 7. Dispersion characteristics and local structure Horeven-H . -odd
modes of an anisotropic chiral waveguide slab; = 9¢, €,y = €.z = 3€0,  higher order modes in semiburied microstrip linki = 0.635 mm,
Pox = Pyy = Pzz = po, §ag = _Cuﬂ = JRaB \€OMHO, Kzz = 0.02, ho = 1.271 mm.
Kyy = Kz = 0. Achiral modes TM,, TE3, not shown) intersect at a

degenerate MCP. The addition of chirality.,. perturbs the symmetry of the . ] ]
structure, inducing hyperbolic mode-coupling behavior and a nondegenerafean unperturbed anisotropic waveguide slab. The degeneracy

MCP. of achiral modes is removed with the addition<f,, resulting
point (double-point bifurcation) of even and odd modes when formation of the dispersion curves’ hyperbolic behavior in
wa [hy = 0.25 (symmetrical structure). Slight changes in striphe vicinity of the MCP. The local structure in the mode-
width (decrease or increase with respect«/;) break coupling region of chiral modes is stable, which is guaranteed
a double-point bifurcation and form stable hyperbolic-typby the presence of the nondegenerate MCP in the local
behavior of dispersion curves in the vicinity of the MCP. Ivicinity. Instability of the structure occurs when chirality
should be noted that degeneracy of the MCP leads to instabilitgrameter..,. goes to zero, leading to degeneration of achiral
of the structure with respect to width strip at the double poinnodes. Although not shown here, a similar perturbation can be
Stability of the structure is predicted by nondegenerate MCRishieved in the absence of chirality by rotation of the optical
obtained in the mode-coupling region of a nonsymmetricakis away from the geometrical axes of the waveguiding
transmission line. structure [29].

As a second example, consider the anisotropic chiral wave-The third example of codirectional coupling arises in the dis-
guide slab shown in the insert of Fig. 5. Dispersion charapersion characteristics fdr.-odd-H_-even andr . -even-# -
teristics of hybrid surface-wave modes are obtained from thed higher order modes of a shielded microstrip-like trans-
numerical solution of a system of coupled integral equatiomsission line partially buried in the substrate, as shown in
which are formulated using the volume equivalence principkgs. 6 and 7. The geometry of the structure is depicted
for bianisotropic media. Fig. 5 shows dispersion curves in the the insert of Fig. 6. Local structures are obtained us-
mode-coupling region for the normalized propagation constang representation (20) for mode coupling of codirectional
k./ko and the local structure generated about the MCP. Thaves. MCP’s are determined at the minimum of coupling
MCP with coordinates(r.,, f») = (1.5912, 97.0352) is between longitudinal-section electric (LSE) and longitudinal-
obtained as the solution of a system of nonlinear equatiogsction magnetic (LSM) background modes of the layered
(2). Chirality ... acts as a parameter of structural perturbatiomaveguide. MCP found in the coupling region of odd modes
leading to coupling of independent TE and TM achiral moddsas coordinate$s.,,, f,n) = (0.9079, 19.7411) (see Fig. 6).
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1.65 - . . . have been observed in various guided-wave structures, includ-
N 'f‘l’jfvvs;:‘e‘““re ing shielded nonreciprocal finline [23], lossless shielded boxed
1.60 L \ ¥ MCP | microstrips [30], [31], and diffraction gratings [18], which may
\ 'K be explained using the proposed approach based on the concept
2155 ¢ ] of MCP's. , . ,
£ S Fig. 8 shows the propagation constants behavior for strip
= - width w/h; = 0.372. The local structure (4) satisfying the
E 1.50 ¢ f complex mode condition (22) is represented by a straight-
line equation (23) forRe{x(f)} and canonical form of the
145 ¢ impmperm;;lplex ellipse equation centered &t = f,, (28) for Im{x(f)}, as
shown in Figs. 8 and 9. The coupling fact&l/%,, defined by
1.40 relationship (27) at Morse frequengy, for contradirectional

6.5 7.0 75 8.0 8.5 9.0

waves, is equal to 0.03835. Two branches of a hyperbola
Frequency (GHz)

are obtained out of the frequency range (24) generating local
Fig. 8. Mode coupling of contradirectional improper modes for condusstructure (4) about the MCP with coordinatés,,, f..) =

tor-backed coplanar strips in case®f /hy = wy/hy = 0.372. Improper (1.5079, 7.8516). It is found that coordinates of fold points
complex mode occurs in the mode-coupling region. Local structure and func- ’

tional characteristics are obtained in the vicinity of the M@ph; = 0.311, @s transition points from a pair of improper real solutions to

hi =1cm, e = 2.25, 6 = L. a complex conjugate improper mode can be approximated by
functional characteristics obtained in the vicinity of MCP's.
Coordinates of fold point&x 1, fr1) and(x 2, fr2), depicted

0.04 in Fig. 8, have been calculated using approximation formulas
T el structure (29) and (30), and found as (1.4855, 8.3039) and (1.5303,
0.02 b ¥Mmcp 7.3992) respectively. Coordinates of fold points presented in

[22] are (1.4865, 8.3688) and (1.5315, 7.4473), which have
been obtained using definition of those points and the full-
wave solution. Note that the dispersion characteristics shown
in Figs. 8 and 9 represent general behavior of natural modes
in the region of contradirectional coupling for a variety of
waveguiding structures mentioned above.

IV. CONCLUSION

-0.04 . . .
6.0 7.0 8.0 9.0 The concept of MCP’s from catastrophe theory is presented

Frequency (GHz) to show the relationship with the traditional coupled-mode
. . formalism. The expression for the coupling factor is obtained
Fig. 9. Full-wave results and local structure for attenuation constants versus . . ..
frequency forw, [l = wa/h1 = 0.372. In"terms of functional properties of the characteristic deter-
minant in the vicinity of the MCP, related to the minimum
of mode coupling. Mode coupling between codirectional and
Fig. 7 shows MCP’s determined in coupling regions of everontradirectional waves is considered and investigated us-
modes with coordinateSs,,1, fm1) = (0.6627, 27.2586) and ing analytically obtained formulas for local structures about
(Km2, fmz2) = (0.7297, 27.4193), respectively. The presenceMCP’s. The complex mode appearing in the mode-coupling
of the strip results in a perturbation of the structure, leading tegime of contradirectional waves is explained, and complex
coupling of background modes and formation of hyperbolienode frequency range is determined. Approximate formu-
type behavior of hybrid modes’ dispersion characteristics las for coordinates of fold points are obtained using the
mode-coupling regions. local representation of the function in the vicinity of the
As a final example, the spectrum of all possible solution8)JCP. A geometrical interpretation of mode coupling and
including proper and improper real and complex modespmplex-mode regimes is demonstrated by simple normal
has been investigated for a symmetrical conductor-backizims showing qualitative dispersion behavior in the regions
coplanar strips geometry [22], [28], shown in the insert aff interest. Numerical results, including the full-wave solution
Fig. 1. It has been observed that small changes in strip widihd generated local structures about MCP’s, are obtained for
w/hy (wy = we = w) from 0.370 to 0.372 can significantly various types of guided-wave open and shielded structures.
change qualitative behavior of improper real solutions antis shown that the presence of nondegenerate MCP’s in
generate an improper complex nonphysical mode [22], [28hode-coupling regions is related to structural stability in
Note that the behavior of improper real and improper compléite local vicinity. Degeneracy of MCP’s leads to instability
modes in the region of interest is considered in this examp#é the structure with respect to certain perturbations and
for illustrative purposes, showing the connection with thformation of a double-point bifurcation. The concept of MCP’s
contradirectional coupling formalism from the coupled-modi& conjunction with a full-wave solution can be effectively
theory. The similar characteristic behavior in mode-couplingsed for identification, analysis, and explanation of interesting
regions and the occurrence of complex modes in those regi@fifects associated with mode coupling.
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