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Analysis of Mode Coupling on Guided-Wave
Structures Using Morse Critical Points

Alexander B. Yakovlev,Member, IEEE,and George W. Hanson,Member, IEEE

Abstract— New insight on mode coupling in waveguiding
structures is obtained from the theory of Morse critical
points (MCP’s). It is shown that the traditional coupled-mode
formalism has a clear analytical connection with functional
properties of the characteristic determinant in the vicinity of
the Morse critical point, which determines the minimum of
coupling. The relationship between perturbed and independent
modes in the mode-coupling region is obtained using the Taylor
polynomial of order two about the Morse critical point, and it is
found that the coupling factor is proportionally related to the
value of a characteristic function at this point. The qualitative
modal behavior in the mode-interaction region is predicted by
a simple normal form, which can be geometrically interpreted
as a result of the intersection of a saddle surface and a plane
corresponding to the minimum of the coupling factor. Numerical
results for a variety of guided-wave structures, including
printed-circuit transmission lines, planar-slab waveguides, and
shielded microstrip-like lines demonstrate the efficiency of the
proposed approach for the rapid identification of mode-coupling
regions, and for reconstruction of dispersion behavior in those
regions via simple analytic (normal) forms.

Index Terms—Coupling, coupled-mode analysis, critical points,
electromagnetic coupling, transmission lines, waveguides.

I. INTRODUCTION

M ORE than 40 years ago Pierce, investigating the cou-
pling of modes in microwave traveling-wave tubes [1],

formulated the relationship between modes before and after
coupling, and introduced the concept of a coupling factor
between waveguide modes. Later on, a great number of papers
appeared in the scientific literature showing development of
the coupled-mode theory and applications for microwave and
optical waveguides [2]–[4] and devices, including directional
couplers [5], periodic structures [6], nonparallel waveguiding
structures [7], grating couplers [8], etc.

Various mathematical approaches have been applied for
the analysis of coupled waveguiding structures. A general
review of coupled-mode theory is provided in [9], as well
as providing some examples of coupling in resonator and
waveguiding systems via a variational principle. The appli-
cation of a generalized reciprocity theorem has been proposed
for mode-coupling study in parallel dielectric waveguiding
structures [10]. It is shown that results obtained by the use of a
generalized reciprocity relation and by a variational principle
are identical. A coupled-mode theory for multilayered and
multiconductor transmission lines has been developed using
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a generalized reciprocity theorem as well [11]. The coupling
coefficients are obtained in terms of the overlap integrals
connecting eigenmode fields and currents of individual con-
ductors. Full-wave perturbation theory has been applied for the
accurate analysis of coupled microstrip transmission lines [12]
and resonant structures [13]. The numerical results agree well
with those obtained by a Galerkin’s moment-method solution
and with experimental data.

A different view on mode coupling is based on the principles
of catastrophe theory [14]–[16]. Analysis of the eigenmode
mutual coupling using the concept of Morse critical points
(MCP’s) from catastrophe theory has been originally intro-
duced for open resonators and open waveguides [17]. It has
been observed that two solutions form a coupling diagram
in the vicinity of the MCP found in the mode-coupling
region. An effect of resonant and intertype oscillations in open
two- and three-dimensional resonators has been investigated
using the rigorous spectral theory of open structures [18]
in conjunction with the concept of MCP’s [19]. This idea
has been also applied for the analysis of the eigenmode and
induced-mode coupling in open waveguide resonators [20].
Coupling effects of complex waves have been considered in
multilayer cylindrical strip and slot lines [21]. It was found that
isolated MCP’s and degeneration points have clear physical
connection with observed dispersion behavior. Some results on
free oscillations and intertype waves in diffraction gratings and
their explanation by means of the analysis of singular points
have been collected in [18]. A “nonphysical” complex regime
of spectral curves has been found, which will be explained
later in this paper, based on the analysis of the normal form
defined by the MCP.

In this paper, the connection with the traditional coupled-
mode formalism is demonstrated in terms of structural char-
acteristics in the vicinity of MCP’s. It is shown that simple
analytical expressions for perturbed and independent modes
in the mode-coupling regions can be obtained from the Taylor
polynomial of order two about the MCP. Qualitative behavior
of spectral curves in the region of interest is predicted by
the analytically constructed normal form. A geometrical in-
terpretation of the normal form is given as a result of the
intersection of a saddle surface and a plane corresponding
to the minimum of coupling. A clear explanation of the
dispersion curves’ hyperbolic behavior, and conditions for
the occurrence of complex mode regimes is shown. The
relationship between MCP’s and fold points associated with
leakage [22] is demonstrated for the case when a complex
mode occurs in the mode-coupling region. Open and shielded
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guided-wave structures are investigated to show the generality
of the obtained results.

II. THEORY

Consider a mathematical model of a longitudinally invariant
guided-wave structure resulting in a homogeneous matrix
system for natural modes of the structure

(1)

where is an operator-function, and represent
the unknown guided-wave normalized propagation constant

and frequency, respectively, and would typically
represent a vector of unknown current density or electric
field intensity, depending on a particular problem formulation.
Imposing the necessary condition leads to
the determination of the propagation constant spectrum, which
can include regular and singular (critical) points associated
with certain modal behavior [22]. Functional characteristics
in the local neighborhood of a regular point can be analyzed
using the implicit function theorem [14], where a unique curve

or through a regular point can be obtained.
To investigate the structural behavior at singular points, the
smooth analytical function has been
considered in the complex domain .

It has been shown, for the explicit example of a conductor-
backed coplanar strip line [22], that the MCP generally defined
by the following set of equations:

(2)

exists in the mode-coupling region when two characteristic
curves approach each other and bend before crossing. The
universal mode-coupling behavior observed in a variety of
guided-wave structures is related to the case when the Hessian
determinant is negative. The structural behavior of
in the vicinity of the MCP can be analyzed using
a Taylor series expansion, and the qualitative and quantitative
local structure reconstructed. In the case when the Hessian
determinant is positive, the MCP defines local minima
and maxima [14], [15]. This case is not of interest in this
research and will not be considered here. Note that for the
rest of this paper, the functional characteristics in the lo-
cal neighborhood of the MCP , ,

, , are obtained as
real-valued quantities. This will be the case when the MCP

is real valued, which occurs for lossless media even
in the event of complex modes. The MCP formalism, i.e.,
(2), (4), etc., is equally valid at complex points ,
which occur for lossy media, although, in this case, the
connection with traditional coupled-mode theory is not as
straightforward. Therefore, in the following, lossless structures
will be considered.

To obtain a general relationship between the concept of
MCP’s and the traditional coupled-mode formalism, we use
the result of the Morse lemma [14], [16], which proves that
the function in the local neighborhood of the MCP can
be exactly represented by a quadratic canonical form using
a smooth change of coordinates. Therefore, it is enough to
consider the Taylor polynomial of order two about the MCP

(3)

where all partial derivatives are calculated at and
. Local structure can be easily obtained

from the quadratic form (3), shown in (4), at the bottom of
this page.

The expression (4) represents the local behavior of the
propagation constants in the vicinity of the
MCP , which is located in the mode-coupling region
of a perturbed waveguiding structure. It has been discussed
[22] that the point of modal degeneracy
is related to a double-point bifurcation, and the solution is
represented as two intersecting straight lines. The condition

can be associated with unperturbed modes
[23] with the propagation constants given by

(5)

where represent slopes of intersecting straight lines

(6)

It can be observed that the definition of codirectional
forward (backward) and contradirectional waves is connected
with functional characteristics in the vicinity of the MCP
expressed in terms of defined by (6) as follows:

Codirectional Forward Waves:

(7)

Codirectional Backward Waves:

(8)

Contradirectional Waves:

(9)

Coordinates of the MCP can be expressed in
terms of unperturbed modes’ propagation constants de-
termined by (5) and (6)

(10)

(4)
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Substitution of given by (10) into (4) leads to the
relationship between and

(11)

In contrast to (11), the following result has been obtained
for mode coupling in microwave traveling-wave tubes [1]:

(12)

which expresses the result of coupling of independent (unper-
turbed) modes and , and represents the normalized
coupling factor between modes and . Signs “ ” at
term are related to modes with codirectional and contradirec-
tional power flow, respectively.

Comparison of (11) and (12) makes it possible to con-
clude that the mode-coupling factor is connected with
functional characteristics at the MCP

which leads to the expression of for codirectional
coupling

(13)

and contradirectional coupling

(14)

It should be noted that the case when
is related to codirectional power flow and mode coupling
between two forward (backward) traveling waves. Occurrence
of complex modes in the mode-coupling region between a
forward wave and a backward wave is connected with the
case when . The results (13) and (14)
represent the connection between coupled mode theory and
the concept of MCP’s from catastrophe theory.

It has also been shown [23] that has the
minimum value of the mode-coupling factor of at the
frequency which corresponds to a degeneracy of independent
modes and , leading to . The same result can be
obtained considering and at . Expression (5)
explicitly shows that at frequency the independent modes

are degenerated and . Using this result,
the relationship (11) is reduced to

As a result,

which is consistent with the above expression (13) for the
mode-coupling factor of codirectional waves. The result (14)
for contradirectional coupling can be obtained from (11)
considering imaginary parts of the propagation constants in
the complex mode regime. It should be noted that the Morse
frequency is an important parameter for evaluating the
minimum of the mode-coupling factor.

Using a similar procedure, the following relationship be-
tween and can be obtained:

(15)

and compared with the result given in [23, eqs. (7) and (8)].
In this section of the paper, the connection between the

concept of MCP’s and the coupled-mode theory is shown via
simple analytical relations (11)–(15). It is observed that the
Morse frequency determines the minimum of coupling and
can be effectively used for the identification of mode-coupling
regions.

Before proceeding to examine the specific cases of co- and
contradirectional coupling, it is worthwhile to illustrate the
ideas presented above from a slightly different perspective.
Rather than defining the Morse point as in (2), and considering
the degenerate condition (double-point bifurcation)
as a special case at which point unperturbed modes exist
(which was done in the proceeding), assume initially that the
structure in question exhibits sufficient symmetry such that
two classes of modes (e.g., even and odd) of propagation will
exist independently of each other. Let be the
dispersion equation which implicitly determines . The
conditions [24]

(16)

are necessary and sufficient for to be locally equivalent
around to the normal form

(17)

where , , and denotes the
sign of , . As before, we are interested in the case
when , such that (17) describes two intersecting straight
lines. This is the situation when the dispersion curves of two
uncoupled modes intersect, leading to a modal degeneracy.
Now assume a small perturbation exists which breaks the
original structural symmetry, resulting in coupling of the
previously uncoupled modes. The dispersion equation may be
written as

(18)

where is some small parameter and is a perturbation
function. It can be shown [24] that a function exists
such that: 1) and 2) for any small
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perturbation there is an such that is equivalent
to (i.e., up to equivalence, contains all small
perturbations of ). Such a function is called a universal
unfolding of , and for the degenerate Morse point defined
by (16) the universal unfolding is

(19)

In general, a universal unfolding of
requires additional parameters , where

is called the codimension of . It is shown in [24] that the
codimension of satisfying (16) is unity and, thus, exactly
one additional parameter is needed to locally describe the
effect of all possible small perturbations on . This is
significant, since any such small perturbation (due to geometry,
material inhomogeneity, etc.) is guaranteed to result in the
behavior described by (19), which represents the characteris-
tic hyperbolic form encountered in mode-coupling problems.
Therefore, in this latter representation, behavior about the
nondegenerate Morse point (with ) associated
with mode coupling (detailed previously) is obtained as a
universal unfolding associated with the degenerate Morse point
(with ) for the initial symmetrical structure.
The universal unfolding (19) predicts the same qualitative
form as the Taylor series (3). The definition of (2) together
with the Morse lemma or (16) together with the concept
of universal unfoldings lead to the same answer, although
one method may be better suited for certain analyses that
the other. For instance, the view of a perturbed symmetrical
structure together with a universal unfolding makes it clear
that, in a practical sense, the hyperbolic form (19) always
occurs on physically realizable structures since any imperfec-
tion (perturbation), however small, due to structural/material
asymmetry inherent in a manufacturing process, will result in
mode coupling.

A. Mode Coupling Between Codirectional Waves

Mode coupling of codirectional waves is related to the case
when as well as slope requirements (7)
and (8) for forward (backward) waves expressed in terms of
functional characteristics evaluated in the vicinity of the MCP.
Local structure (4) in the case of mode coupling between
codirectional waves is represented as a pure real valued
function , shown in (20), at the bottom of this page.

According to the definition of codirectional waves
( for forward (backward) waves),

it can be shown using the representation (20) that slopes of
at have the same sign

It can be observed that the function

represents the equation of the straight line with the slope
. The linear coordinate transformation

leads to the form shown in (20a), at the bottom of this page,
which represents two branches of a hyperbola defined by the
canonical form (normal form)

(21)

The result (21) shows the qualitative and quantitative behav-
ior of dispersion curves in the mode-coupling region, which
is geometrically approximated by two hyperbola branches
centered at , as will be demonstrated later. It should
be noted that the function given in the left side of (21)
represents the equation of a saddle surface in the three-
dimensional space . The expression in the right side
corresponds to the equation of a plane related to the minimum
of the coupling factor. As a result, the normal form (21)
is geometrically represented as the intersection of a saddle
surface and a plane, which results in hyperbolic behavior of
local structure associated with mode coupling.

B. Mode Coupling Between Contradirectional Waves

Mode coupling between forward and backward traveling
waves is related to the case when and
slope requirements for contradirectional waves (9). The local
structure (4) generated in the vicinity of the MCP represents
real and complex solutions. If the following condition is
satisfied in (4):

(22)

(20)

(20a)
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then local structure for the propagation constant of complex
modes in the mode-coupling region is represented by a straight
line with the slope

(23)

The complex mode condition (22) allows determination of
the frequency range of complex modes in terms of the Morse
frequency and functional characteristics in the vicinity of the
MCP

(24)

and

If the complex mode condition (22) is not satisfied, the local
structure (4) generates two real-valued branches of a hyperbola
in opposite quadrants in comparison with the case of mode
coupling of codirectional waves. The following frequency
ranges correspond to hyperbolic behavior of propagation con-
stants:

and

To find the values of the propagation constants which
correspond to the boundary frequencies of the complex-mode
regime in the mode-coupling region, we combine (23) and (24)
and obtain the following values for :

(25)

The attenuation constant can be expressed
from local form (4) satisfying the frequency-range condition
(24), shown in (26), at the bottom of this page. The maximum
values of the attenuation constantwill be reached at

and

(27)

which represents the relationship for the coupling factor of
contradirectional waves similar to (14).

Expression (26) can be transformed to the canonical form
of the ellipse equation centered at , which represents
the normal form of the attenuation constant behavior in the
vicinity of the MCP

(28)

with

Other types of critical points, called fold or turning points
[24], have been associated with the transition from a pair
of real improper–improper solutions to a pair of complex
conjugate (leaky mode) solutions [22]. If the complex mode
occurs in the mode-coupling region (case
), the coordinates of a fold point can be expressed in

terms of functional characteristics about the MCP .
The obtained formulas (25) for the propagation constants

at boundary frequencies in condition (24) represent the
approximation of the coordinates of the propagation constant
at the fold points

(29)

The frequency coordinates of the fold points can be approxi-
mated by the boundary frequencies in the condition (24)

(30)

As a result, determination of the MCP’s coordinates gives
complete information about complex modes appearing in the
mode-coupling region. The frequency range of complex mode
regimes and coordinates of fold points are determined in terms
of the MCP’s characteristics.

III. N UMERICAL RESULTS AND DISCUSSION

To illustrate the concepts detailed above, examples of mode
coupling on several different guided-wave structures will be
considered in the following. In each case, a rigorous full-wave
solution has been obtained. In the first example, a full-
wave analysis of printed-circuit transmission lines has been
performed using an electric-field integral-equation technique
similar to [22] and [25]. A coupled set of homogeneous
integral equations has been obtained, enforcing the boundary
condition for the tangential components of the electric field
on the surface of conducting strips. As another example, dis-
persion behavior of guided surface-wave modes on grounded
slabs with anisotropic chirality has been studied via the
volume equivalence theorem for bianisotropic media [26].

(26)
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Fig. 1. Degeneracy of dominantEH0 even and odd proper modes in a
symmetrical conductor-backed coplanar strip line with infinite superstrate.
The degenerate MCP is obtained at the point of intersection of even and odd
dispersion curves:w1=h1 = w2=h1 = 0:25, d=h1 = 0:25, h1 = 1 cm,
h2 = 0:1h1, �r = 2:25, �s=�r = 1:15.

Fig. 2. Dispersion behavior for dominant modes of symmetrical and non-
symmetrical conductor-backed coplanar strips with infinite superstrate (see
insert in Fig. 1). Degeneracy occurs for the symmetric structure (dashed
line) and is broken by the perturbation of symmetry due to unequal strip
widths (solid line):d=h1 = 0:25, h1 = 1 cm, h2 = 0:1h1, �r = 2:25,
�s=�r = 1:15.

The third structure is a shielded microstrip-like transmission
line investigated using the method of integral equations for
overlapping regions [27]. This method leads to a coupled
system of an electric-field Fredholm-type integral equation of
the second kind with a compact kernel.

The above three examples demonstrate codirectional cou-
pling on three different physical structures. In the last example,
contradirectional coupling is examined for improper modes on
a printed transmission line exhibiting a complex-mode regime
between the range of real solutions. In all cases examined here,
a Galerkin’s moment-method solution is applied to convert the
system of integral equations into a matrix system (1).

Full-wave results for odd and even dominant proper forward
modes in symmetrical conductor-backed coplanar strip line
with infinite superstrate are demonstrated in Fig. 1. The ratio
of dielectric permittivities of superstrate and substrate
is chosen about a critical value for which the propagation
constant of the odd-mode approaches the surface-wave
mode, but does not become leaky. It is observed that a

Fig. 3. Full-wave results and local structure for dominant modes of
nonsymmetrical conductor-backed coplanar strips with infinite superstrate:
d=h1 = 0:25, h1 = 1 cm, h2 = 0:1h1, �r = 2:25, �s=�r = 1:15.

degeneracy of the dominant modes occurs at the frequency
4.6133 GHz, meaning that the mode-coupling factor at this
point is equal to zero. The degenerate MCP [
as well as conditions in (2)] with coordinates

is found at the point of the intersection of
even and odd dispersion curves. The local structure generated
in the vicinity of the MCP is represented by two intersected
straight lines and agrees well with the full-wave solution.
Equalization of even- and odd-mode velocities at the degener-
acy point can be observed by varying a spectral or structural
parameter of the symmetrical structure . Changes in
width strip of one conductor perturb the symmetry
of the structure, leading to the transformation of odd and
even modes into- and -modes, and form the mode-coupling
region of codirectional waves shown in Fig. 2. It is observed
(see Fig. 2) that small changes in width strip from 0.25
to 0.27 result in the formation of hyperbolic behavior of the
dispersion curves of- and -modes. It should be noted that the
appearance of- and -modes in nonsymmetrical structures
is the result of coupling between odd and even modes of a
symmetrical transmission line, and is a coupling factor
between odd and even modes. The nondegenerate MCP with
coordinates is obtained in the
mode-coupling region, but is not shown in Fig. 2.

A decrease in strip width from 0.25 to 0.23
also leads to coupling of codirectional dominant modes

. Fig. 3 demonstrates full-wave results
and local structure for nonsymmetrical conductor-backed
coplanar strips with infinite superstrate. Local structure (20)
is generated in the vicinity of the MCP having coordinates

, as shown in Fig. 3. Very good
agreement with full-wave dispersion characteristics behavior
is observed in the mode-coupling region. The minimum of
the coupling factor at , defined by (13), is obtained in
terms of functional characteristics about the MCP and equals
0.000 729.

Minimum coupling factor behav-
ior versus strip width is presented in Fig. 4 for the
above discussed example. Changes in the coupling factor value
are related to the migration of the MCP. A sharp minimum
corresponding to zero coupling is obtained at the degeneracy
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Fig. 4. Minimum coupling factor behavior versusw2=h1 for nonsym-
metrical conductor-backed coplanar strip line with infinite superstrate:
w1=h1 = 0:25, d=h1 = 0:25, h1 = 1 cm, h2 = 0:1h1, �r = 2:25,
�s=�r = 1:15.

Fig. 5. Dispersion characteristics and local structure forEH0 and HE3

modes of an anisotropic chiral waveguide slab:�xx = 9�0, �yy = �zz = 3�0,
�xx = �yy = �zz = �0, ��� = ���� = j���

p
�0�0, �xx = 0:02,

�yy = �zz = 0. Achiral modes (TM0, TE3, not shown) intersect at a
degenerate MCP. The addition of chirality�xx perturbs the symmetry of the
structure, inducing hyperbolic mode-coupling behavior and a nondegenerate
MCP.

point (double-point bifurcation) of even and odd modes when
(symmetrical structure). Slight changes in strip

width (decrease or increase with respect to ) break
a double-point bifurcation and form stable hyperbolic-type
behavior of dispersion curves in the vicinity of the MCP. It
should be noted that degeneracy of the MCP leads to instability
of the structure with respect to width strip at the double point.
Stability of the structure is predicted by nondegenerate MCP’s
obtained in the mode-coupling region of a nonsymmetrical
transmission line.

As a second example, consider the anisotropic chiral wave-
guide slab shown in the insert of Fig. 5. Dispersion charac-
teristics of hybrid surface-wave modes are obtained from the
numerical solution of a system of coupled integral equations
which are formulated using the volume equivalence principle
for bianisotropic media. Fig. 5 shows dispersion curves in the
mode-coupling region for the normalized propagation constant

and the local structure generated about the MCP. The
MCP with coordinates is
obtained as the solution of a system of nonlinear equations
(2). Chirality acts as a parameter of structural perturbation,
leading to coupling of independent TE and TM achiral modes

Fig. 6. Dispersion characteristics and local structure forEz -odd–Hz-even
higher order modes in semiburied microstrip line:h1 = 0:1 mm,
h2 = 1:2701 mm.

Fig. 7. Dispersion characteristics and local structure forEz -even–Hz-odd
higher order modes in semiburied microstrip line:h1 = 0:635 mm,
h2 = 1:271 mm.

of an unperturbed anisotropic waveguide slab. The degeneracy
of achiral modes is removed with the addition of , resulting
in formation of the dispersion curves’ hyperbolic behavior in
the vicinity of the MCP. The local structure in the mode-
coupling region of chiral modes is stable, which is guaranteed
by the presence of the nondegenerate MCP in the local
vicinity. Instability of the structure occurs when chirality
parameter goes to zero, leading to degeneration of achiral
modes. Although not shown here, a similar perturbation can be
achieved in the absence of chirality by rotation of the optical
axis away from the geometrical axes of the waveguiding
structure [29].

The third example of codirectional coupling arises in the dis-
persion characteristics for -odd– -even and -even– -
odd higher order modes of a shielded microstrip-like trans-
mission line partially buried in the substrate, as shown in
Figs. 6 and 7. The geometry of the structure is depicted
in the insert of Fig. 6. Local structures are obtained us-
ing representation (20) for mode coupling of codirectional
waves. MCP’s are determined at the minimum of coupling
between longitudinal-section electric (LSE) and longitudinal-
section magnetic (LSM) background modes of the layered
waveguide. MCP found in the coupling region of odd modes
has coordinates (see Fig. 6).
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Fig. 8. Mode coupling of contradirectional improper modes for conduc-
tor-backed coplanar strips in case ofw1=h1 = w2=h1 = 0:372. Improper
complex mode occurs in the mode-coupling region. Local structure and func-
tional characteristics are obtained in the vicinity of the MCP:d=h1 = 0:311,
h1 = 1 cm, �r = 2:25, �s = 1.

Fig. 9. Full-wave results and local structure for attenuation constants versus
frequency forw1=h1 = w2=h1 = 0:372.

Fig. 7 shows MCP’s determined in coupling regions of even
modes with coordinates and

, respectively. The presence
of the strip results in a perturbation of the structure, leading to
coupling of background modes and formation of hyperbolic-
type behavior of hybrid modes’ dispersion characteristics in
mode-coupling regions.

As a final example, the spectrum of all possible solutions,
including proper and improper real and complex modes,
has been investigated for a symmetrical conductor-backed
coplanar strips geometry [22], [28], shown in the insert of
Fig. 1. It has been observed that small changes in strip width

from 0.370 to 0.372 can significantly
change qualitative behavior of improper real solutions and
generate an improper complex nonphysical mode [22], [28].
Note that the behavior of improper real and improper complex
modes in the region of interest is considered in this example
for illustrative purposes, showing the connection with the
contradirectional coupling formalism from the coupled-mode
theory. The similar characteristic behavior in mode-coupling
regions and the occurrence of complex modes in those regions

have been observed in various guided-wave structures, includ-
ing shielded nonreciprocal finline [23], lossless shielded boxed
microstrips [30], [31], and diffraction gratings [18], which may
be explained using the proposed approach based on the concept
of MCP’s.

Fig. 8 shows the propagation constants behavior for strip
width . The local structure (4) satisfying the
complex mode condition (22) is represented by a straight-
line equation (23) for and canonical form of the
ellipse equation centered at (28) for , as
shown in Figs. 8 and 9. The coupling factor , defined by
relationship (27) at Morse frequency for contradirectional
waves, is equal to 0.038 35. Two branches of a hyperbola
are obtained out of the frequency range (24) generating local
structure (4) about the MCP with coordinates

. It is found that coordinates of fold points
as transition points from a pair of improper real solutions to
a complex conjugate improper mode can be approximated by
functional characteristics obtained in the vicinity of MCP’s.
Coordinates of fold points and , depicted
in Fig. 8, have been calculated using approximation formulas
(29) and (30), and found as (1.4855, 8.3039) and (1.5303,
7.3992) respectively. Coordinates of fold points presented in
[22] are (1.4865, 8.3688) and (1.5315, 7.4473), which have
been obtained using definition of those points and the full-
wave solution. Note that the dispersion characteristics shown
in Figs. 8 and 9 represent general behavior of natural modes
in the region of contradirectional coupling for a variety of
waveguiding structures mentioned above.

IV. CONCLUSION

The concept of MCP’s from catastrophe theory is presented
to show the relationship with the traditional coupled-mode
formalism. The expression for the coupling factor is obtained
in terms of functional properties of the characteristic deter-
minant in the vicinity of the MCP, related to the minimum
of mode coupling. Mode coupling between codirectional and
contradirectional waves is considered and investigated us-
ing analytically obtained formulas for local structures about
MCP’s. The complex mode appearing in the mode-coupling
regime of contradirectional waves is explained, and complex
mode frequency range is determined. Approximate formu-
las for coordinates of fold points are obtained using the
local representation of the function in the vicinity of the
MCP. A geometrical interpretation of mode coupling and
complex-mode regimes is demonstrated by simple normal
forms showing qualitative dispersion behavior in the regions
of interest. Numerical results, including the full-wave solution
and generated local structures about MCP’s, are obtained for
various types of guided-wave open and shielded structures.
It is shown that the presence of nondegenerate MCP’s in
mode-coupling regions is related to structural stability in
the local vicinity. Degeneracy of MCP’s leads to instability
of the structure with respect to certain perturbations and
formation of a double-point bifurcation. The concept of MCP’s
in conjunction with a full-wave solution can be effectively
used for identification, analysis, and explanation of interesting
effects associated with mode coupling.
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